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Abstract

Background: RNA-seq is being increasingly adopted for gene expression studies in a panoply of non-model
organisms, with applications spanning the fields of agriculture, aquaculture, ecology, and environment. For organisms
that lack a well-annotated reference genome or transcriptome, a conventional RNA-seq data analysis workflow
requires constructing a de-novo transcriptome assembly and annotating it against a high-confidence protein
database. The assembly serves as a reference for read mapping, and the annotation is necessary for functional analysis
of genes found to be differentially expressed. However, assembly is computationally expensive. It is also prone to
errors that impact expression analysis, especially since sequencing depth is typically much lower for expression
studies than for transcript discovery.

Results: We propose a shortcut, in which we obtain counts for differential expression analysis by directly aligning
RNA-seq reads to the high-confidence proteome that would have been otherwise used for annotation. By avoiding
assembly, we drastically cut down computational costs – the running time on a typical dataset improves from the
order of tens of hours to under half an hour, and the memory requirement is reduced from the order of tens of Gbytes
to tens of Mbytes. We show through experiments on simulated and real data that our pipeline not only reduces
computational costs, but has higher sensitivity and precision than a typical assembly-based pipeline. A Snakemake
implementation of our workflow is available at: https://bitbucket.org/project_samar/samar.

Conclusions: The flip side of RNA-seq becoming accessible to even modestly resourced labs has been that the time,
labor, and infrastructure cost of bioinformatics analysis has become a bottleneck. Assembly is one such
resource-hungry process, and we show here that it can be avoided for quick and easy, yet more sensitive and precise,
differential gene expression analysis in non-model organisms.
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Background
RNA-seq has become the principal technique for mea-
suring variation of genome-wide gene expression lev-
els across conditions [1]. Differential expression analysis
usually begins by mapping RNA-seq reads to either a
reference genome or transcriptome sequence. On one
hand, accurate genome annotation has not kept up with
the increase in sequence data [2]. Consequently, well-
annotated and high-quality reference sequences are avail-
able for only a handful of model organisms. On the other
hand, driven by declining costs, RNA-seq is becoming
increasingly accessible to labs with modest resources; and
as a result, it is being employed on an ever-expanding cat-
alog of non-model organisms, pervading the fields of agri-
culture, aquaculture, ecology, and environment. A very
short list of recent studies include: environmental stress
response in sea-trout [3], coral [4], ryegrass [5], pigeon-
pea [6], tiger barb [7]; immune response to parasites and
pathogens in guppy [8], eel [9], silkworm [10], peanut [11],
sunflower [12]; mechanisms of phenotypic divergence in
hares [13], bats [14], grass carps [15]; effect of diet in
the growth and development in shrimp [16], yellow perch
[17], mandarin fish [18], grenadier anchovy [19], catfish
[20], tilapia [21], bass [22]. It is only likely that RNA-
seq will continue to rapidly proliferate while high-quality
reference databases grow at a slow pace.
The conventional strategy to adapt standard reference-

based RNA-seq analysis workflows to the case of non-
model organisms, has been to first compute a de-novo
transcriptome assembly by pooling all reads and to
annotate the assembly against a high-confidence protein
database. Since assemblers typically do not provide a read-
to-contig mapping, the subsequent step is to map the
reads to the assembly. This is followed by a quantification
step in which reads mapping to each contig are counted.
The count data is used for statistical testing of differential
expression. Since the number of differentially expressed
genes tends to be quite large, inference of biological func-
tion is done computationally by using the annotations to
perform GO-term enrichment or pathway analysis.
A major drawback of de-novo assembly is that it

requires massive computational resources. In most cases,
the goal is to characterize the expression profile of the
protein-coding fraction of the transcriptome, and not nec-
essarily to obtain an assembly. Accordingly, samples are
sequenced at a much lower depth than would be required
for a reliable assembly [23]. Assembly errors such as over-
extension, fragmentation, and incompleteness of contigs
can adversely impact downstream expression analysis [24,
25]. Furthermore, assemblers tend to over-estimate the
number of isoforms/contigs per gene, which introduces
complications for statistical test of differential expression
as well as interpretation of results since many genes could
appear multiple times in the final result. These issues have

motivated supplementary measures such as clustering
contigs [26] or aggregating expected read counts of con-
tigs which map to the same reference gene [27], prior to
statistical testing of differential expression. Finally, in spe-
cial cases such as comparison of gene expression across
species, it might not even be reasonable to compute a
single assembly.
We provide an alternative strategy that circumvents the

need for assembly and annotation. The first step of our
proposed pipeline uses LAST [28, 29] to directly align
RNA-seq reads to the high-confidence protein set which
would otherwise have been used for annotation. This is
followed by a simple counting step that employs a tra-
ditional rescue strategy to resolve multimaps [30]. The
counts can be fed into standard count-based differen-
tial gene expression analysis tools, e.g. DESeq2 [31]. Our
main proposition here is that since functional analyses
in non-model organisms rely on a database of homolo-
gous proteins in order to draw conclusions, it might be
more reasonable to directly allocate reads to those homol-
ogous proteins using DNA-protein alignment, instead of
introducing an error-prone yet computationally heavy
intermediary step of assembly.
The main and obvious advantage of our method is that

it drastically brings down computational costs. For exam-
ple, for a typical RNA-seq study containing 2 groups
of 3 replicates each and 20 million paired-end reads
per replicate, our approach takes under half an hour,
whereas computing an assembly would take several tens
of hours. Additionally we show, through experiments on
simulated and real RNA-seq datasets, that our method
is more accurate in identifying differentially expressed
genes than an assembly-mapping-quantification pipeline.
Another advantage is that it is easier to interpret results,
as each homologous gene is reported as differentially
expressed or not, along with associated statistical mea-
sures. In contrast, with assembly-based pipelines, there
might be a need to consolidate results across several frag-
mented contigs. Furthermore, reference proteomes, for
example in UniProt, come with GO annotations, allowing
for a straightforward transition to downstream functional
analysis; whereas with assembly-based pipelines, there is
a need to post-process the multiple local alignments that
might be reported by the annotation software for each
contig.

Implementation
Implementation of our proposedmethod
We have implemented our proposed strategy as a Snake-
make pipeline [32], which is available at https://bitbucket.
org/project_samar/samar.
The first step in the workflow aligns RNA-seq reads

to a reference set of proteins. For this we use the DNA-
protein alignment feature of LAST [28, 29, 33]. We chose

https://bitbucket.org/project_samar/samar
https://bitbucket.org/project_samar/samar


Shrestha et al. BMC Genomics           (2022) 23:97 Page 3 of 9

LAST over numerous other aligners capable of DNA-
protein alignment – BLASTX [34] being a prominent
example – for its unique combination of features. It scales
well to high-throughput sequencing data. The probabilis-
tic framework for incorporating paired information from
paired-end reads, which was originally designed for read-
to-genome alignment [35], works out of the box for the
case of read-to-proteome alignment. It allows training
the substitution matrix and gap penalties to reflect the
sequence divergence between the (translated) RNA-seq
reads and the reference proteome [36].
In the second step, from the alignments produced by

LAST, we compute counts of reads originating from each
entry in the reference. This is not trivial due to multi-
mapping, an issue that becomes more pronounced when
the reference contains isoforms with high sequence sim-
ilarity. We employ the simple strategy of rescuing multi-
mapping reads proposed in [30], where the contribution of
a read mapping to several protein sequences is distributed
based on their read coverage estimated from uniquely
mapping reads. Suppose the reference is a set of protein
sequences indexed by P = {1, 2, . . . , n} . The counting pro-
ceeds in two passes. In the first pass, we obtain the count
of reads aligning uniquely to sequence i, normalized by
the length of i covered by the uniquely mapping reads. Let
us denote this normalized count by ui. In the second pass,
for each readmulti-mapping to a subset P′ ⊆ P, we update
the count of sequence i ∈ P′ in proportion to ui, i.e. to the
current count of sequence i, we add ci, where

ci = ui
∑

j∈P′
uj
.

If the denominator is zero, we distribute the count
evenly among P′.
The counts obtained in the second step can be fed

directly to count-based differential gene expression analy-
sis tools. In our pipeline, we use DESeq2 [31].

Benchmarking
We performed benchmarking on both real and simulated
RNA-seq read datasets from the protein-coding tran-
scriptome of the fruit fly D. melanogaster. We chose this
extensively studied transcriptome since the transcripts
and protein products associated with each gene is known
for a huge number of protein-coding D. melanogaster
genes. Such a mapping between Flybase ID and UniProt
ID can be obtained from Ensembl, UniProt, Flybase [37],
etc., and was used for evaluation of our workflow.
The simulated RNA-seq read dataset was generated as

follows. We downloaded the transcripts of protein-coding
genes from the fruit fly assembly BDGP6.28 obtained
from Ensembl Genes 101. After removing sequence dupli-
cates and transcripts with no corresponding protein

entries, there were 28,692 transcripts of 13,320 genes.
From this transcriptome, we simulated 2 groups of RNA-
seq reads with 3 replicates per group using Polyester [37].
In the first group, the mean expression levels of the tran-
scripts were set to be proportional to the FPKM values
computed from an arbitrarily chosen poly-A+ enriched
real RNA-seq data (ArrayExpress E-MTAB-6584). The
FPKM values were estimated using RSEM [38] on Bowtie2
[39] alignments of the reads to the transcriptome. In
the second group, a subset of roughly 30% of the tran-
scripts were set to be differentially expressed at varying
levels of up- and down-regulation: 1.5, 2, and 4-fold. The
transcripts were chosen by randomly selecting genes and
setting only the highest expressing isoform to be differen-
tially expressed. Since inference of differential expression
is typically done at the gene level, having at most one iso-
form to differentially expressed simplifies the evaluation
process [40] as we can define a gene to be differen-
tially expressed if one of its transcripts was differentially
expressed. In fact, it might not be too far from reality as
it has been shown that most highly expressed protein-
coding genes have a single dominant isoform [41]. Each
read set had roughly 20 million pairs of 100 bp reads with
mean fragment length of 250 bp.

Results
DNA-protein alignment attains similar performance to
using a transcriptome reference
We first demonstrate, under ideal conditions, the sound-
ness of our idea of aligning RNA-seq reads to a proteome
reference for differential gene expression analysis, by com-
paring our performance to that of the traditional case of
using an established transcriptome reference.
We aligned the fruit fly simulated RNA-seq reads

(described earlier in the Implementation section)
to the UniProt D. melanogaster proteome UP0000
00803, which contains 1 representative protein sequence
per gene, and fed the counts obtained by our method to
DESeq2 [31] for differential analysis. To serve as baseline
for comparison, we ran a typical pipeline consisting of
Bowtie2 [39] for read alignment to the D. melanogaster
transcriptome, followed by RSEM for transcript quantifi-
cation, tximport [40] for gene-level aggregation of counts,
and finally DESeq2 [31] for differential analysis at the
gene level. Details of the two pipelines are provided in the
Supplementary Material.
We evaluated the two approaches based on their recall

and precision in predicting differentially expressed (DE)
genes. Recall is the proportion of actual DE genes that
were correctly predicted to be DE, and precision is the
proportion of predicted DE genes that were actually DE.
We require that the direction of fold-change (up/down)
match between the ground truth and prediction to be
classified as a correct prediction. To compute recall and
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precision of our method, wemapped our predictions from
the set of proteins to the set of genes using the mapping
between UniProt protein ID and FlyBase gene ID obtained
from Ensembl.
Figure 1(left) shows the Precision-Recall curves

obtained by varying the false discovery rate (FDR) thresh-
old of DESeq2, and Fig. 1(right) shows the distribution of
the estimated log fold-change at an FDR threshold of 0.1.
There is almost no difference between the two approaches
in the ability to detect DE genes and in the trend of
under- or over-estimation of true fold change. This result
demonstrates that for differential gene expression analy-
sis, there is no performance degradation when aligning
RNA-seq reads to a proteome reference, even though we
are effectively only using reads from the coding region of
transcripts.

In the absence of a close reference, our method
outperforms a typical assembly-based approach
Next we simulated the scenario faced in the case of non-
model organisms by pretending that the D. melanogaster
reference sequences are not available, and that the clos-
est species with a well-annotated reference proteome is
a distant relative, the mosquito Anopheles gambiae. The
two species are of the same order Diptera with their lin-
eages thought to have separated roughly 250 million years
ago [42]. The evaluation process described below uses
the mosquito proteome as reference; but to calibrate the
effect of the degree of evolutionary and sequence diver-
gence, we repeated the process with reference proteomes
of closer relatives ofD. melanogaster:D. ananassae andD.
grimshawi.

We compared our performance to that of a typical
assembly-based pipeline consisting of: Trinity [43] for de-
novo transcriptome assembly, followed by Bowtie2 for
mapping the reads to the assembly, RSEM for count-
ing, tximport for gene-level aggregation using the gene-
to-transcript mapping provided by Trinity, and finally
DESeq2 for differential analysis. We used the Dammit
pipeline [44] to annotate the assembly against the
mosquito proteome. Details of the two pipelines are pro-
vided in the Supplementary Material.
To facilitate the comparison, we obtained a pre-

computed orthology map between A. gambiae and D.
melanogaster, from the website of InParanoid [45]. Con-
sider a D. melanogaster protein-coding gene g, and let Fg
be the set of protein products of g. For a D. melanogaster
protein f, let Of be the set of mosquito proteins in the
same ortholog group as f. We associate with g the set Mg
of mosquito proteinsm such thatm ∈ Of for some f ∈ Fg .
We computed recall and precision of our method

as follows. An actual up-regulated (down-regulated) D.
melanogaster DE gene g was defined as correctly pre-
dicted if there was at least one protein in Mg that was
predicted to be up-regulated (down-regulated). Recall was
defined as the number of correctly predicted DE genes
divided by the number of actual DE genes. Precision was
defined as the number of correctly predicted DE genes
divided by the number of genes g for which at least one
protein inMg was predicted to be DE.
We computed recall and precision of the assembly-

based approach as follows. For a Trinity gene t, let Dt be
the set of mosquito proteins that Dammit assigned to the
isoforms of t (if there were multiple alignments for an iso-

Fig. 1 (Left) Precision-recall curves of our method using the D. melanogaster proteome reference and the Bowtie2-RSEM-DESeq2 pipeline using its
transcriptome reference. The three shape markers in each curve correspond to setting the FDR threshold of DESeq2 to 0.01, 0.05, and 0.1. (Right) Log
fold change of true positive DE genes estimated by DESeq2 at FDR threshold of 0.1, compared against the 6 simulated log-fold change levels
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form, we kept only one with the lowest E-value). With an
actual D. melanogaster gene g, we associated a set Tg of
Trinity genes, where t ∈ Tg if Dt ∩ Mg �= ∅. An actual
up-regulated (down-regulated) DE D. melanogaster gene
g was defined to be correctly predicted if there was at least
one up-regulated (down-regulated) Trinity gene in Tg .
Recall was defined as the number of correctly predicted
DE genes divided by the number of actual DE genes. Pre-
cision was defined as the number of correctly predicted
genes divided by the number of genes g for which at least
one gene in Tg was predicted to be DE.
The definitions of recall and precision are necessar-

ily slightly different for the two approaches. Our hope is
that they convey a similar meaning – that an actual D.
melanogaster DE gene is represented by a set of orthol-
ogous mosquito proteins (in our method) or by a set
of Trinity genes for which there was an annotation to
an orthologous mosquito protein (in the assembly-based
method), and that the gene is considered to be correctly
predicted if at least one of the representatives are pre-
dicted to be DE.
Figure 2 shows the precision and recall of our

method and the assembly-based approach when using the
mosquito reference proteome. It also contains the PR-
curves when using the D. ananassae and D. grimshawi

Fig. 2 Precision-Recall curves of our method and the assembly-based
pipeline, when using reference proteomes of close relatives (D.
ananassae and D. grimshawi) and a distant relative (A. gambiae). The
three shape markers in each curve correspond to setting the FDR
values of 0.01, 0.05, and 0.1

reference proteomes. The curves were obtained by vary-
ing the FDR threshold of DESeq2. When using the two
Drosophila reference proteomes, the performance of our
method varied slightly, but in both cases, outperformed
the assembly-based approach. When using the A. agam-
biae reference, recall was lower for both methods, mainly
because the orthology map contains only 60% of the fruit
fly proteins – there were 7341 ortholog clusters involving
7863 fruit fly proteins and 8090 mosquito proteins.
Overall, across any setting of FDR threshold or any

choice of a reference proteome, our approach outper-
formed the assembly-based approach.
So far, to compute recall and precision of the assembly-

based approach, we used all the alignments reported by
the Dammit pipeline, even including many short local
alignments. It is not uncommon in practice to filter short
alignments. We repeated the analysis by keeping only
those alignments predicted by the Dammit pipeline that
covered at least 50% of a contig. The precision-recall
curves for this cases is shown in Fig. 3, which shows a
significant drop in recall of the assembly-based approach.

With real data too, our method outperforms the
assembly-based approach
We applied our pipeline and the assembly-based approach
to a recently published real RNA-seq dataset ArrayEx-

Fig. 3 Precision-Recall curves of our method and the assembly-based
pipeline, when using reference proteomes of close relatives (D.
ananassae and D. grimshawi) and a distant relative (A. gambiae), and
with the alignments produced by Dammit which covered less than
50% of the length of the contig removed. The three shape markers in
each curve correspond to setting the FDR values of 0.01, 0.05, and 0.1
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press E-MTAB-8090 ERR3393437–42. The dataset con-
tains RNA-seq reads of the hemocyte tissue of D.
melanogaster samples with and without injury, with 3
replicates for each condition. After cleaning and trimming
low-quality reads using fastp [46], there were roughly 110
million pairs of reads.
Continuing with the assumption that no reference

sequences are available for D. melanogaster, we applied
our pipeline and the assembly-based pipeline as in the
previous section using the mosquito and two Drosophila
reference proteomes. Since we do not know the ground
truth for this dataset, to serve as baseline, we addition-
ally ran the Bowtie2-RSEM-DESeq2 pipeline using D.
melanogaster reference transcriptome. To be able to com-
pare the DE call sets, we mapped our predicted DE genes
to theD. melanogaster gene names using the same Inpara-
noid orthology maps as before.
Intersection of the sets of DE genes obtained from the

two approaches and the baseline are shown in Fig. 4. At
FDR threshold of 0.01, there were 104 genes identified
as DE by the baseline method. Based on the observa-
tion from Fig. 1 that the Bowtie2-RSEM-DESeq2 pipeline
has high precision at FDR 0.01, let us assume that all of
these baseline calls are correct and that they constitute
the empirical ground truth. At the same FDR threshold,
when using the D. ananassae reference proteome, our
method was slightly more sensitive than the assembly-
based approach, being able to predict 68 out of the 104
baseline DE genes, compared to 58 by the assembly-based
approach. Our method was also slightly more precise,
with the 68 calls corresponding to roughly 78% of the calls,
compared to 74% for the assembly-based method. This is
in line with observation from Fig. 2 that our method has
slightly better sensitivity and precision than the assembly-
based approach. Similar results were obtained when using
the D. grimshawi reference proteome.

When using the A. gambiae proteome, there is a sig-
nificant decrease in the size of the overlaps between the
baseline and the two approaches, consistent with the drop
in sensitivity observed in Fig. 2. The two approaches are
similarly sensitive (25 calls by our approach vs. 27 by
assembly-based) while our method is more precise (25
out of 34 calls by our approach vs. 27 out of 46 calls by
assembly-based).

Avoiding assembly dramatically reduces running time and
memory usage
All the experiments above were carried out on a system
with Intel Xeon Silver 4114 Processor with 10 cores and
20 threads. For the real dataset E-MTAB-8090 which con-
tains roughly 110 million pairs of cleaned reads, de-novo
assembly alone took more than 24 hours. In contrast,
DNA-protein alignment, which is the most compute-
intensive part of our pipeline, takes less than 20 minutes
per sample containing roughly 20 million pairs of reads,
using 20 threads. While the de-novo assembly had a mas-
sive peak memory usage of ∼ 65Gbytes, the memory
requirement of our method is dominated by the size of
the proteome index, which was just ∼ 33Mbytes for the
mosquito proteome. In general, the index size is roughly
5 × n bytes, where n is the length of the proteome.

Discussion
Summary of results
We have shown that aligning RNA-seq reads to a pro-
teome reference followed by a simple counting procedure
provides an extremely fast and light-weight alternative to
the current resource-intensive assembly-and-annotation
based approach for differential gene expression analy-
sis. We have shown through experiments on simulated
and real datasets that our approach is more sensitive and
precise than the assembly-based approach.

Fig. 4 For the three reference proteomes, Venn diagrams showing the intersections among the Baseline set consisting of DE genes called by the
baseline approach of Bowtie2-RSEM-DESeq2 using the D. melanogaster reference transcriptome, Our set consisting of D. melanogaster genes to
which the DE genes called by our approach mapped to, and (3) Assembly-based set consisting of D. melanogaster genes to which Trinity DE
genes mapped to. FDR threshold of 0.01 was used for all three approaches
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Isoform-level quantification
In this paper, we focused on differential expression anal-
ysis at the gene level, as it has been shown that it is
advantageous to perform statistical inference of differen-
tial expression at the gene level even if the quantification
is done at the transcript level [40]. Since we used reference
sets with only 1 protein entry per gene, our counts were
automatically at the gene level. However, it is also possi-
ble to get isoform-level counts and aggregate the counts
at the gene level for differential analysis. We saw no loss
of performance with this approach (Supplementary Mate-
rial). An advantage of isoform-level counts is that it can
be used for other kinds of statistical tests such as differen-
tial usage of isoforms across conditions. This is akin to the
differential transcript expression/usage studies.

Choice of reference
Our results suggest – not surprisingly – that the choice of
reference has a huge influence on the outcome of differ-
ential expression analysis, since a distant reference means
fewer reads are aligned (correctly). One source to find a
closest possible proteome is the UniProt Reference Pro-
teome database. This database currently contains almost
20,000 proteomes of organisms which are relatively well-
studied and “provide broad coverage of the tree of life”
[47].
Apart from single-species reference proteomes, it is also

common to use cross-species proteins sets such as Swiss-
Prot for annotating transcriptome assemblies. In theory,
our method can also use Swiss-Prot as reference. How-
ever, Swiss-Prot is extremely redundant due to presence
of orthologous proteins, which can needlessly aggravate
the issue of multi-mapping. To use Swiss-Prot as refer-
ence, it is advisable to remove sequence redundancies by
using tools such as CD-HIT [48] or MMSeq2 [49] and by
selecting a subset of Swiss-Prot based on taxa.

Room for improvement
Currently we use a simple technique of rescuing multi-
mapping reads. It would be interesting to explore a more
sophisticated way to handle multi-mapping issues similar
to a statistical model in RSEM.
LAST currently does not handle quality data present in

the fastq records during alignment, and as far as we know,
nor do other DNA-protein aligners. It is an interesting
open problem to investigate if incorporating the quality
data improves alignment accuracy, not just in this applica-
tion to RNA-seq data analysis but to other applications of
DNA-protein alignment.

Long reads
This paper is focused on short-read datasets, since from
our cursory literature search in the Introduction section,
it appears that long-read technologies are currently not as

widespread in the applied fields that deal with non-model
organisms. Theoretically, the core idea of DNA-protein
alignment carries over just as well to long reads. Longer
sequences can potentially improve accuracy as it would
be easier to disambiguate counts among paralogous genes
and isoforms. However, application to long reads war-
rants a separate benchmarking process as one needs to
account for error profiles and error rates characteristic to
long-read technologies.

Conclusions
With RNA-seq becoming accessible to even labs with lim-
ited resources, the time, labor, and infrastructure cost of
bioinformatics analysis has grown. Transcriptome assem-
bly is one such resource-hungry process, which takes
several tens of hours on typical datasets, even on high-
performance computing systems. For many labs, such
requirements can impose a serious bottleneck. By avoid-
ing assembly, our pipeline allows for quick and easy, yet
more sensitive and precise, analysis of differential gene
expression in non-model organisms.
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